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On the basis of the results obtained in a series of papers [25] - [28], a
convergence theorem for Newton's method in Banach spaces is given, which

improves the theorems of Kantorovich [4], Lancaster (8] and Ostrowski [16].
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SIGNIFICANCE AND EXPLANATION
//} To £find sharper error bounds for iterative solution of nonlinear
equations under assumptions as weak as possible is of basic importance in

numerical analysis. This paper gives a convergence theorem for Newton's
—
method in Banach spaces which improves the theorems of Kantorovich [4],
Lancaster [8] and Ostrowski [16]. The error bounds obtained improve the
"
recent results of Potra [17]). ;-
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A CONVERGENCE THEOREM FOR NEWTON'S
METHOD IN BANACH SPACES

Tetsuro Yamamoto.
1. Introduction

There is much literature concerning convergence and error estimates for Newton's

oL

- -
method in Banach spaces. In a series of papers [25] - [28), we examined the error bounds {li;ﬂ;
A
which have been obtained by many authors (Dennis (1}, Tapia [(24), Rall-Tapia ([20], }it}
L-avy
‘-'}-}d

Ostrowski [15), [16], Gragg-Tapia (3], Miel (9] - [11], Potra-Pt&k [18), Moret {12]) un-

®
|

the assumptions of the Kantorovich theorem, and compared them with the Kantorovich FARRNON
"..'.-’ »
bounds. As the result, we concluded [28] that their results follow from the Kantorov. :i- X
(Y
theorem so that, under the Kantorovich assumptions, the Kantorovich theorem still give 3 ‘3.
iCd
»
HE Y

the best upper bounds for the Newton method.

In this paper, we are interested in improving the assumptions of the Kantorovich
theorem and the assertions of the Ostrowski theorem [16; Theorem 38.1]. We shall first
state both theorems and several lemmas in §2. Next, in §3, we shall present a convergence
theorem which improves both theorems. It will also be shown that results improve the
error bounds of Lancaster (8], Kornstaedt [7) and Potra {17}. Finally, in §4, we shall

show that Ostrowski's other theorem [16; Theorem 38.2) can b2 derived by our approach.

2. Preliminaries
Let X and Y be Banach spaces and consider an operator F : DC X + Y.
If F 1is Fréchet differentiable in an open convex set DO C D, then the Newton method

for solving the equation

*Department of Mathematics, Facﬁiéy of Science, Ehime University, Matsuyama 790, Japan.
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N F(x) = 0 (2.1) LN N
' is defined by n N
v -1 : ¢
:‘ Xnep = %, = F'(x) F(x) , n20, (2.2) e _‘.:
- . \;‘.}‘;“
: provided that F'(xn)" € L(Y,X) exists at each step, where L(Y,X) denotes the Banach :J',_ " >
+ O
‘ space of bounded linear operators of Y into X. Sufficient conditions for convergence =
> W 'h
t- of the iterates (2.2), error estimates and existence and uniqueness regions of solutions .‘;'.‘-_..‘-}.
T pIANLYLY
- are given by the famous Kantorovich theorem: g‘_\‘-‘::-":: -
‘. .\-‘ -.:'.,
Theorem 2.1 (Kantorovich [4], [5] and Kantorovich-Akilov [6]). let F : DC X+ Y SR

be Frécht differentiable in an open convex set Dy C D. Assume that for some

x, € DO' F‘(xo) is invertible and that

1Et ()" (P (x) - FUy T S KIx =yl , K> 0, x, y€D

ol
4 1P (x ) "F(x )1 < N n>o0
0 X! 2 T e '
1
h-xn<5
and
= 1 -Y1 - 28
= - * = .
S(x),t*) [x € x] 1x xSt < }gno
Then:

(i) The iterates (2.2) are well-defined, lie in the open ball S(xo,t") -
{x € X|1x - xol < t"} and converge to a solution x* of the equation (2.1).

(ii) The solution x* is unique in s(xo,t“) N p if 2h ¢ 1 and in §(x°,t“)

0
if 2h = 1, where t** = (1 + Y1 = 2h}/K.
(iii) Error estimates
2n n
e - x 8 g —2——— < 2", 0y, (2.3)
1t +71 - 2hn

hold, where nn and h, are defined by the recurrence relations

»
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0 ¢ ho =h = Kn ,
B h n
n=-1 - n-1 n=-1 -
B " T—h M TIO-h 5 MR, 20 (2.4)
n-1 n-1
1
I (4i1)* Put f(t) = 3 ktz =t + n and define the sequence {tn} by
ty =0, o=ty - £(E)/E°(t)), n 2> 0.
: Then
I lxn*‘ - xnl £ tn+1 - tn
; and the error estimate
- tx* ~ xnl $ tr - the D 20, (2.5)
- holds.
L The bounds (2.3) are of the form found in (4], while the bound (2.5) is found in [5}
- and (6]. We should remark here that B, and n_ are the bounds for LU PRER STENT
;f and lxn+' - xnl, respectively. 1In fact, by induction on n, we have
i e ) B et = 1T+ P 0T ) - B 0V e T TE o
oy n 0 n-1 n n=-1 n=1 0
A < Zn-1 < e SN B
- = - ’

i 1 Bn_,'ltlxn xn_1l 1 hn-1 n
' x - x_ = ~F'(x )-1F(x }

n+1 n n n

*

»

] -1 1] -
= -Ffx )T {F(x) = Flx ) = B M= ox 0}

,
' 1
) -1 [} - - [ -
] = -F'(x) oj fPrax ¢ et = x ) - Bl e - x_g)de (2.6)
and

On the other hand, Nstrowski [15], [16] proved the convergence of the Newton method

under the assumptions which are slightly different from those of Kantorovich.

-3~

T T R S S )

PP
> e R e
St la’aal,

Ao s




Theorem 2.2 (Ostrowski [15; Theorems 38.1 and 40.2)). Let F: DC X+ Y and o°

be the interior of D. Asgume that for some x_ ¢ D°, F'(xo) and !"'(xo)-1 exist. Let

0
® 2 0, a=14+cosheg, p= e-°lx1 - xol and 0 = q lF(xo)I-IF'(xo)-1I2 . Consider the

line segment L = {txo + (1 = t)x1|0 St < 1] and the closed ball § = §(x1,o). and

put C =L U S. Assume now that ¢ c D°, F is Fréchet differentiable on C and

IF'(x) = F' () ¢ 1x - yl , X, yeL, X, yes. (2.7)

Q

Then the Newton jiterates (2.2) are well-defined, xn € §, n > 1, and {xn} converges to
a solution x* ¢ § of (2.1), which is unique in C. Furthermore, the following

inequalities hold:

-2n-1o sinh ¢ " - '
=1 1 T %
sinh 2 [

A

Ix* - x 1 e
n

(2.8)

A
~N
-
=

-
]
L
-
-~

. -
x x 1 (2.9)

+1

PN
-
b3

]
x
-
b=}
v
o
.

In [28], we derived (2.8) and (2.9) under the assumptions of Theorem 2.1 and showed
that they do not improve Gragg-Tapia's bounds. Furthermore, we proved that Moret's
bounds, which also follow from Theorem 2.1, are sharper than those of Gragg-Tapia, Potra-
Pt&k and Miel. The argument in [28] also works under the assumptions of an affine
invariant version of Theorem 2.2, which are weaker than those of Theorem 2.1 with

n = lx1 - xol, provided that X # Xy Therefore, on the basis of results obtained in
[28}, we can improve Theorems 2.1 and 2.2.

Before giving an improved version of both theorems, we state several lemmas. In the
following, without loss of generality, we assume that F(xo) # 0. This assumption will te
kept throughout this paper.

Lemma 2.1. Let F: DT X + Y and r° be the interior of D. Assume that for some

Xq € 0°, F'(xo) and F'(x,) ' exist and F(xo) #0. Let ¢ 20, a =1+ coshg,

-d-
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n = lx1 - xol and p = e-vn- Define the sets L, g and C as in Theorem 2.2.

Furthermore, agsume that C C p°, F is Fréchet differentiable on C and, for some
K> 0,
lF'(xo)-1(F'(x) SFUY SKix-yl, X, yeL X, ¥e¢ 5, (2.10)
and
ah = akn < 1 .

Then the iterates (2.2) are well-defined, xn €S = s(x1,o) (open ball), n 2 1 and

lxn+1 - xnl < tn+1 - tn, n > 0, where {tn} is the majorizing sequence defined in
Theorem 2.1. Therefore, the sequence {xn} converges to a solution x* ¢ s of (2.1) and

Ix* - x 1<t -t

Proof. By the assumption ah < 1, we have 2n ¢ 1 since a > 2. Therefore, the

majorant theory of Kantorovich can be applied to the sequence {xn}, by noting that the
condition (2.10) holds and that

Ix - x, 0 < Ix -x b + 1x - x|\
= n n

n+1 1

SUE -t H e —e) = -ty
cev - mlod -K/1 - 2n

-e (2.11)

PN
©
=1

i
©
-

where equality holds in (2.11) if and only if ah = 1. Q.E.D.

Lemma 2.2. Under the assumptions of Lemma 2.1, define the sequences

.}, {8}, {n} ana {n } as in Theorem 2.1. Then
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That is, ¢t* -t and t** - ¢ are the solutions of the equation PR N o
n n AR

. et
Lt

1?2 -¢t+n =o. YAty
2 n n Mo X

Proof. The same proof as in {28] works under the assumptions of Lemma 2.1. Q.E.D.

Lemma 2.3. Under the assumptions of Lemma 2.2, we have for n > 1

-1
() B =1 -xe =71 -2n4+ (xn_ )2
n n n=-1
Yt
(Ve )
n
KB t* -t
(iii) n 1

14T - (th)z

where V denotes the backward difference operator.

Proof. See the proof of Proposition A.3 in (28]. Q.E.D.

Lemma 2.4. Under the assumptions of lemma 2.2, let 0 = t*/t** =

(1 =vY1 - 2h)/(1 + Y1 = 2h). Then we have for n 20

2 e a%

H 1 -2h R (2h < 1)
Gy ek - o
1 - = ."- . Wt
1= . BRI
n 2™ (h =1,
L

L
s ¢ “n+1 2" .
(ii) 7 =8 . 4
n+1 £
Proof. See the proofs of Proposition A.1 and Proposition A.4 (ii) Ca]
in {281, Q.E.D.
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' Lemma 2.5. Under the notation and assumptions of lemma 2.4, we have for
- g n-1 .
- e BRI (s> 0)
. sinh 2 ?
(i) t* =t ¢
. 1-n -2""% sinn ¢
' 2 n = lim(e —*——rl:1—'\)(9‘0)1
¢*+0 sinh 2 ¢
n n
(1) 92 ¢e2 Y.
' The equalities hold in (i) and (ii) if and only if ah = 1.
Proof. Take 9* > 0 such that a*h = (1 + cosh ¢*)h = 1. Then, by Proposition A.4
in (28], we have that the equalities hold in (i) and (ii). Therefore Lemma 2.5 follows
- for every © € [0,9*], since the right hand-sides of (i) and (ii) are monotone decreasing
P with respect to . Q.E.D.

We end this section by proving the following lemma.

lemma 2.6. Under the assumptions of lemma 2.1, define the sequence {Bn} as in

. Theorem 2.1. If, for some n, there exists a constant Mn > 0 such that
: Ix* - I < = ix* = ]
x xn+1 i3 Mn b xn

and Mn < KBn. Then

: . 24
! Ix* - x 0 ¢ O % n s
Ii n 1t +/1 - 2Ma
non
- 1 - x 1.
- where dn = xn*1 xn
- Proof. Without loss of generality, we may assume that d # 0, that is x* # x .
) Then, by assumptions, we have

KB lx* -~ x “2 .
n n

ix* = x k=43 < ] M Ix* - x 1% ¢ L
n n=2 n n = 2

Hence, if we put

) bit) =dmel-t+d and () =dkstl-te+a ,
n 2 n 2 n

I - S B - . N
e T e, St et et B P TN U JP S

LT A e T T T T e T S e e T e T o
3o gt ey o ge Anldaladaldaltolalalald ol Nt

Cate SN e .
A Sl e R n B




then -
¢ (Ix* = x M) > ¢ (Ix* - x 1) >0
n n = 'n n =

and

1)

F(t) > 6 (t) for t>0 or & (t) = 6 (¢) .
n n n n

By Lemmas 2.1 and 2.2, we have

Ix* = x 1 < t* -t
n = n

KB t2 -t +n =0.
n n

N

and t* -t , t** -t  are two solutions of the equation Wn(t) =

Furthermore we have Vn(t) 2 sn(t). Therefore Gn(t) and 3n(t) have positive solutions

c , 0 and © , O© respectively such that
n n n n
* -~ ® * *k ~ %R L 2]
c < g £t -t <t -t <0 < ¢ if M < KB ,
n n = n = n=n n n n
- ~ W * L 2] ~ R -k
g = <t -t <t -t <o =g if M = KB and 4 < n
n n n = n n n n n n n
and
* ~ ® * L4 4 ~ R "
o =0 =t -t <t -t =29 =0 if M = KB and 4 =n_ .
n n n = n n n n n n
In any case we have
* *
Ix - x 01 <o '
n = "n
- » w - i
since ¢ (Ix =~ x 1) > 0 implies ¥x = x 1 < g or Ix - x 0 >9o
n n = n = "n n = "n
and the latter case can be excluded. Q-E.D.

3. Results
We are now in a position to prove the fonllowing theorem.
Theorem 3.1. Under the assumptions ~i iesma 2.1, the following results hold:
(i) The iterates (2.2) are well-defined, the sequence Ixn1, n > 1 remains in an

open ball § = S(x1,o) and converges to a solution x* ¢ § of the equation .2.1).
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U 20T b A G 8 A S e s N Sl N Ve b

,J, — A ke VP ol T YA S I TS ALY e ror L
L4
A
A
.w
h (ii) The solution is unique in C.
(1ii) lLet
N 1IF (xRN (x) - Py
K = gup n i . n21,
x,y€S x =y
xpy
¥
y Ko = K
“-
and put 4 = lxm,.| - xnl. Then the following error estimates hold.
[\ -
o (a) A posteriori error estimates:
i 2a_
- Bx* - x 1 g ‘th } 0) (3.1)
. 1 +/t-2kd
. n n
k. v = 21 (n = 0)
N 1+ /T
<
- 2dn
. (n2 " (3.2)
- / -1
{_ 1+ /1 -2k - ROIx - x4+ a)} A
.\
< (n > 0) (3.3)
1+/1-2x01 - k) Ta
- n n
::‘ 5 t* -t
< ———24a (n>0)
- = Vt:“+1 n =
e tr-t
¢——d _, (n2 1 (Miel [10])
e (vt )
N n
: K
< (n > 1) (Potra-Pt&k (18))
MN-oom+e(xa )2+ /M-
n-1
= t* -t
L $—r—d .y (n2 1) (miel (10])
:: -9-
-~
=
“-
<
I\‘
. -. e s .- >, ..;. “-"- » ‘_ ) S '\.'j' RO S S ,:.:-.
LHCEHL TR TN A -\.\\ R AT SR . .
h i $-}n_!\(\f P'.“ o PN AL A% A_"A_ .'.9 {L‘A‘L{L"::“:’fl_"::’lk‘.L':L-.‘::A_ﬂ.L.L‘ .LXL‘A(A.L_‘-!A_AAA;‘AiA‘ P o q--‘}.':. )




(n 2 1) (Gragg-Tapia [3])

(n 2 1) (Ostrowski [16)).

The equality holds in (3.4) if and only if ah = 1.

(b) A priori error estimates:

Ix* - xnl S tr - tn (n 2 0) (Xantorovich [5}, (6])

(2h < 1)

(2h = 1) (n > 0) (Gragg-Tapia [3])

n-1
- h ¢
e . Bi“n_, n (¢ >0)
sinh 2° @ p¢

RN

2" e=0) (n3 0. (Ostrowski [16])

The equality holds in (3.5) if and only if ah = 1.

(iv) If F 1is Fréchet differentiable in an open convex set D; such that ° D DyOC
and if F'(x) satisfies the Lipschitz condition in D; with the Lipschitz constant K,

then the solution x* is unique in

[S(xo,t“) ODO if 2h < 1

S =
1\s(x0,t") n Do if 2h = 1,

Furthermore, (3.2} may be replaced by the sharper bound

24
Ix* - x 1 g = (n 2 0) (Moret [12]) (3.6)

1+/1-2x(1 -xa e
n n

= ftx - x.1.
n 0
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Proof. (i) was proved in Lemma 2.1. To prove (ii), let ;. be a solution in 8.

Then we have

p oo . )-1
x Xowq = % x + (xn r(xn)

= P x )R - k) - B xR - )]

n . n n n
1
= e ) [ TR ¢ R - x ) - xR - x)at
n 0 0 0 n n n’ n
and
~t -
x +t{x ~x), x €8, n>1.
n n n =
Hence, by (2.10) and Lemma 2.3 (ii) we have
Ve
~ ~% ~h
Ix* - x 1< 3 B KiIx - x I2 = ntl ix - x I2
ntl =2 'n 2 n
(Ve )
n

so that

~ ~* ~ n

Ix = xn+1l (lx - xhl 2 Ix - x1l 2 e 2"

< ) g eee s ( ) s (B) <1
th+1 vt vt n =

This implies

Ty v 0

Xom xSV L

~

as n + =, Thus we obtain x = lim L x*. Next, we shall show that there is no

nHo
- - -
solution in C\S, provided that the set C\S ig not empty. To show this, let x

solution in C\S. Then we have

2 2

-t
2 < % K(n - p)2 = % K(1 - e )%

-9 _
Kix xol

-t 1
e n=90p0<¢ Ix - x1l 4 3
s0 that

1 <X (cosh ¢ = 1)n = K(a = 2)n_< 1 = 2h ,

which is a contradiction. This proves the uniqueness of the solution in C. To prove

(iii), we first observe that

be a

,
3

-

v,

L

R

.
7,
270
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1

- = ! ' - - -
X* - X F*(x ) £ ¢ (x + t(x* - x)) p'(xn)} (x¢ - x )at

X + t(x*=-x), x €8, n>1,
n n =

n
Frx ) = {1+ B TN - B + Bx) TN () = P(xo} T (x ) !
n 0 n 1 0 1 0 0
and
X 0 Xy c§, n>1, L xoeL.

Hence we have from Lemma 2.3 (i)

1 v 1

' e =

I (xn) F (xo)' 2B FTT K(lx = x 1 +4d)) (rn2M (3.7)
n 1 0
1
s 1 - Kt = Bn
n
and
1 2 1 ' 2 1 2

® - - ® - - * - - ® -

1x xn+1l ﬁ 3 Knlx xnl g 2 KBnlx xnl § 3 KBnIx xnl .

Therefore Lemma 2.6 can be applied to obtain the bounds (3.1) - (3.3) for n > 1. Observe
that if n = 0, they reduce to the Kantorovich bound t* = 2n/(1 + /1 = 2h). The other
part of (iii) follows from Lemmas 2.2 - 2.5. This proves (iii). Finally we shall prove
(iv). Let F be Fréchet differentiable in an open convex set D, such that

p°2p

o D C and F'(x) satisfy the Lipschitz condition (2.10) in Dy Then (3.7) may be

replaced by the sharper estimate

-1 1
L] [] ————————————
IE(x ) P x5 Kix_- x,1 '

0

n 2 0.

Therefore, Lemma 2.6 can again be applied to replace (3.2) by (3.6). To prove the
~ ~ ~

uniqueness of solution in S, let x be a solution in S. Then there exists a

nonnegative constant r such that r < 1 if 2h <1, r ¢ 1 if 2h =1 and

~t
Ix - xol 5 rt**. By induction on n, we can show that

~t 2"

tx = x B gr(e**-t), n20. (3.8)

-12-
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In fact, we have under our assumptions

I;. -x 1 < 1 KB Ix* = x I2
ntl = 2 n n
n
1 2" .. 2
sym i (e t )}
2n+|
.y o -
- r (t t, nn)
2n+1
- L ] -
4 (ter tn+1) »

where we have used the induction hypothesis and Lemma 2.2. This proves (3.8), from which
we obtain
~®
Ix = x1+0
n

n
as n + %, since r2 +0 4f 2h < 1 and ¢t** - t, =t -, 0 if 2h = 1. Hence we

~® ~
have x = lim X = x*, which implies the uniqueness of solution in S. Q.E.D.
noe

Assumptions similar to those of Theorem 2.2 or Lemma 2.1 were also adopted by
Lancaster (8], and later by Schmidt [22]}, [23) for the generalized secant method which
includes the Newton method as a special case. lancaster's assumptions corresond to the
case ¢ = 0 in Lemma 2.1, while Schmidt's correspond to the case where ¢ is chosen so

that ah = 1, in which case we have o = e ?

n=¢t* =n. In the following we shall
improve Lancaster’s result. (In the case of the Newton method, Schmidt's upper bound
reduces to the Kantorovich bound t* ~ ‘n' Also see [28].)

Corollary 3.1.1. let F: DC X+ Y and D° be the interior of D. Assume that

for some Xq € D°, F'(xo) and F'(xo)-1 exist, F'(xo) # 0 and F 1is Fréchet

differentiable on §° = §(x1,lx1 - xol)- Furthermore, put

|r'(x°)"(r'(x) - Py

Lo = sup _
xX,y€eS
xty

Ix - yl
0
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1f 2Lolx - x

1 0

which converges to the unique solution x* of (2.1) in go.

1E(x )R (x) = B y))

L = sup_ T e N2 1
x,yeso
xry
and
dn = 'xn#l - xnl, n>0,
then the following error estimates hold:
Zdn
Ix* - xnl < 6n = (n > 0)
1+/7-2L a
nn
I"nd;‘:---1
< (n > 1)
/ 2
+ -
1 1 (Lndn_1)
2
< n-1"n-1 (n>1
= - /—-——_ =
! Ln-1dn-1 + 21:'n-1dn-‘l
2
n~-1"n-1
£ R (n>1) .
n-1 n=1

| < 1, then the Newton process (2.2) generates a sequence {xn} cSs

0

(3.9)

(3.10)

Proof. Put ¢ = 0 in Theorem 3.1. Then Corollary 3.1.1 follows from Theorem 3.1 by

noting that

o
oA

Q.E.D.

The bound (3.10) is due to Lancaster [8] and (3.9) is what Potra cited in his recent

paper [17] as Kornstaedt's bound (7).
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Corollary 3.1.2. Under the notation and agsumptions of Corollary 3.1.1, we have

2a_
Ix* - x 1 ¢8 < y, - (n 3 0)
tedrom o -raT e
-1
2P (xg) P(x )1
s (n20)
- _ 2 _ cix 1)
1= Lga ¢ 0 - La T - 2Lirt(xg) T Rx )
2
L,d
: 0 n-1 (n Z 1
2 2
t-rga + /00 = LA0T - (L)

where A = Ix - x_ 1.
n n 0

Proof. It is easy to see that

and

)

. <yt . -1
dn ¢ Ir (xn) r (xo)l lr‘(xo) r(xn)l

-1
lF'(xo) F(xn)l .

1
STTT
T-L A

Furthermore, we have

-1 -1
Prxy) T F(x ) = FUx) T {F(x ) < Bx ) = FUx 000 = x )}
-1 1
= F'(x)) g {Frax_y o+ etx =% ) = Fx _}x - x
so that
vix ™) L a2
IF* (x4) P(xn)l 308y N2 1.

Therefore, Corollary 3.1.2 follows from Corollary 3.1.1.

-15=

n-

1

(3.11)

(3.12)

yat

Q.E.D.
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Remark 3.1. The bounds (3.11) and (3.12) were recently obtained by Potra [17] under
-1
L]
the assumptions of Theorem 2.1 as BS(An' IF (x4) F(xn)l) and Bd(An'dn-1) respectively
in his notation.
We can further improve the bound 6n obtained in Corollary 3.1.1.
Corollary 3.1.3. Under the assumptions of Corollary 3.1.1, put Mg = L and for
n> 1
§ = Stx, 2P (x ) 'Ex M),
n n n n

1R (x )T (R 0 = B y))

M = sgup_

Ix - y!
X,y€S xoy

x yy
Then we have

x*e§ C§5 ,C...CS5§
n = "n-1 - -

and
24
n

Ix* = x I ¢ e = <6, n>0.
n =

"y sT-ma - "
nn

[ A4

Proof. This immediately follows from Lemma 2.6 by noting that 24 <d and

n+l1 = n
1 2 1 2
Lyx® = ] - Ixt - ] - Ix* - L] . «BeD.
x LI < 3 Mn x X, < 3 Lh x X « n 20 Q.E.D

Remark 3.2. As was remarked in [17]), the cost of obtaining L L, or M, might be
very high. Therefore, in practical computation, it would be better to make use of one of
(3.2), (3.3), (3.6) and (3.12). However, Theorem 3.1 and its Corollaries assert that the
error bounds which have been obtained by many authors with the use of different techniques
can be derived from the majorant theory of Kantorovich and Lemma 2.6, in a unified manner.

Theorem 3.2. Under the assumptions of Lemma 2.1, we have

Ve Vt

n+1 2 n+1

(Ve )
n

d
n

2 %=1 &£ %1
n

1
{———————d ., nz1. (3.13)
2 cosh 2" 1@ n=1 =

The equality holds in (3.13) if and only if oah = 1,




< T N e
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Proof. It follows from (2.6) and Lemma 2.3 (ii) that

vt vt

1 2 n+1 2 n+1
L T s o T 7 %-1 8T %p-1 (3.14)
(th) n

Choose o* > 0 such that (1 + cosh ¢*)h = 1. Then, from Lemmas 2.4 and 2.5, we have

*
-!i_nh_Ln (?i>g)

o= 2n°'(t' -t ) = sinb e
nt1 - ® n+1 -
277 (e* = 0) .

Hence

sinh 20 Voe

th+1 - sinh 2n¢*

vt

n 1
- * =
3 (o 0)
- ! ! (3.15)

<
2 cosh 2"'19' * 2 cosh 2n-1v

for every ¢ € {0,9*]. The equality holds in (3.15) if and only if ¢ = ¢*. This,

' together with (3.14), proves Theorem 3,2, Q.E.D.

Remark 3.3. The bound (3.13) is of the form found in Ostrowski (16; Theorem 38.2].

4. Obsexvation

Under the assumptions of Theorem 2.2, Ostrowski proved that

n=-1 2
(sinh 2 L) ) (o > 0)

lr(xn_m)l sinh 2n+m-1°
IF(x )1 : n-1 2 (4.1)
n 1 ginh 2 ']
~5m = lim ( YT ] (9= 0)
2 ¢++0 s8inh 2 ]
< -—1— >0 >0
) 2 om n ¢ W2 ’
v 2
‘
: -17=~

-
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provided that F(x,) # 0. By our approach, we can easily derive his estimates. Let

= -1 1 2

- - - - - 1 - -
K=¢g , B= IF'(xo) I, n= BlF(xo)l, f(t) = 3 KBt = t + n. Furthermore, we define

the sequences {En} and {;n} by

=n, ho = ﬂonol

0 0
B h__.n
- -1 - =-1"n-1 - o= =
Bn' n- ;on = n 1'-1 , hn-xsnnn' n1t.
1 - -
hn-1 201 hn-1)
Then it is easy to see that
-1 - -
1} 1< -
F (xn) < Bn ’ Ixn+1 xnl £ n,
and
1
= ' - -
Fix ) = Flx ) + [ Frx + tlx o - x))(x . = x)dt

0

1
) - - L] -1
= [ {F (x ) = B'(x + tlx xn))}r (x ) F(x )at .

0
Hence we have
IF(x )0 < 5 Kix_ . = x IIF'(x ) TH=1F(x )1
n+1 = 2 n+1 n n xn
1 2= = r.‘n 2
$ 3 Kn B AF(x )N = (; ) IF(x )1 . (4.2)
n-1

Define the sequence {E } by

n
= £ =t = f r
g, =0, £, =& - Fe /B, nyo0.

Then, by Lemmas 2.2, 2.4 and 2.5, we have
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- - 2" v -
nn = tnﬂ - f'n =e t - tn-H)

8inh 9 . (05 0

sinh 2% (4.3)

20 (e =0) .

~

- - - -
since ah, = 1, where t = (1 ~-/V1 - 2h°)/K- Therefore, we have from (4.2) and (4.3)

e n=-1 2
(&“.‘i_l) (o > 0)

lF(xn+1)I ) sinh 2n0
IF(x )1 = 1
n - (o = 0) .
2

This leads to the estimate (4.1). Therefore, together with (3.13) which holds in our
case, we proved the main part of his theorem [16; Theorem 38.2]). The remaining part also
follows from our approach.

Finally we remark that the chart for the lower bounds given in (28] is still true

under the assumptions of Lemma 2.1 with a slight modification:

2,
Ix?* - xnl 2 (n 2 0)
1 + /1 +2Kndn
24
2 (n =0)
1 +7Y1 + 2h
4 2a_ (4.4)
(n21)
=1
T/ e k{1 - ki - x4+l e
2a_
2 (n 2 0) (Miel [11), Schmidt [23))

1+ /1 + 2K(1 - x:n)"d

=19~

oo N ”:-"’ - “~
1') f.\ :‘:-“} - u\?u\ Ly




> o (n 2 0) (Potra-Ptak [18])

/ 7%d
1 +/1 4+ n
kd + /1 - 2n + (xa )2
n n

24
N | S
1+ /1 + 2hn

v

(n > 0) (Gragg-Tapia [31).

If the assumptions of Theorem 3.1 (iv) are satisfied, then (4.4) may be replaced by the
sharper lower bound

2d
n

Ix* - x 1
n

v

{n 2 0) (Yamamoto [28]) .

1+/1+2K(1-KA)-1d
n n

We also have

2dn
Ix* - x 0 >¢ = —mm——— , n >0,
n = =

My s AT T Ma
nn

with the notation and assumptions of Corollary 3.1.3.
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